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21 Summary

22  Vertical farming is a type of indoor agriculture where plants are cultivated in stacked 

23 systems. It forms a rapidly growing sector with new emerging technologies. Indoor 

24 farms often use soil-free techniques such as hydroponics and aeroponics.

25  Aeroponics involves the application to roots of a nutrient aerosol, which can lead to 

26 greater plant productivity than hydroponic cultivation. Aeroponics is thought to 

27 resolve a variety of plant physiological constraints that occur within hydroponic 

28 systems.

29  We synthesize existing studies of the physiology and development of crops cultivated 

30 under aeroponic conditions and identify key knowledge gaps.

31  We identify future research areas to accelerate the sustainable intensification of 

32 vertical farming using aeroponic systems.

33
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34 Introduction

35 A period of rapid development in agricultural technology is underway, with precision dosing, 

36 machine learning, process automation, robotics, gene editing, and indoor farming paving a 

37 revolution in agricultural productivity (Rose & Chilvers, 2018; Klerkx & Rose, 2020). Indoor 

38 farming has expanded quickly within the horticultural sector due to yield consistency and 

39 environmental control capabilities (Benke & Tomkins, 2017). Indoor farming divides into two 

40 broad sectors: greenhouse and vertical farming. Vertical farming has emerged as an 

41 increasingly economic strategy within horticulture, enabling improvements in resource- and 

42 land-use efficiency.

43 Vertical farming involves plant cultivation in vertically stacked irrigation systems, using 

44 artificial or natural light (Fig. 1). This commonly uses soil-free growing environments and 

45 hydroponic or aeroponic irrigation technology (Benke & Tomkins, 2017). Benefits include 

46 urban food production, fewer food miles, seasonal independence of crop production, price 

47 stabilization, product consistency, isolation from pathogen pressures, cultivation at latitudes 

48 incompatible with certain crops (e.g. desert and arctic areas), and utilization of space 

49 including disused buildings or tunnels (Despommier, 2011; Specht et al., 2014; Benke & 

50 Tomkins, 2017). Further benefits include crop production without impacting soil health, and 

51 nutrient recapture and recycling (Benke & Tomkins, 2017). This makes vertical farming land- 

52 and water-use efficient (Despommier, 2011). One commercial forecast suggests that the 

53 vertical farming industry will have annual compound growth of 21.3% to reach an estimated 

54 value of $9.96 billion by 2025 (Grand View Research, 2019). The potential benefits and 

55 value of indoor vertical farming has caused the proliferation of cultivation technologies 

56 (Benke & Tomkins, 2017; Shamshiri et al., 2018).

57 A driver of technological innovation for vertical farms is minimizing operational costs whilst 

58 maximising productivity. One such expanding technology is aeroponics (Fig. 1). For 

59 example, the number of “aeroponic” patents filed increased from 320 between 1975 and 
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60 2010 to over 1000 in the last decade (Google Patents, 2020). Aeroponics is thought to 

61 resolve several plant physiological constraints occurring during hydroponic cultivation. This 

62 can include greater oxygen availability within the root bed and enhanced water use 

63 efficiency (Jackson, 1985; Mobini et al., 2015). However, the variety of aeroponic 

64 technologies, species cultivated, and growth conditions makes systematic comparisons of 

65 technologies and growth conditions challenging. Whilst aeroponics can provide advantages 

66 for plant performance, it also requires more extensive farm infrastructure and control 

67 technology compared with the more mature technologies of hydroponics. Therefore, 

68 aeroponics might be less compatible with certain economics, crops, or locations with 

69 intermittent electricity supply. To refine the commercial implementation of aeroponic 

70 horticulture, we examine the effects of aeroponic cultivation upon several aspects of plant 

71 physiology, development and productivity. We identify knowledge gaps and areas for future 

72 plant sciences research to advance this field.

73 What is aeroponic cultivation?

74 Aeroponics exposes plant roots to nutrient-containing aerosol droplets (Fig. 1). This 

75 contrasts hydroponics, which includes partial or complete root immersion in a nutrient 

76 solution, and drip irrigation involving application of nutrient solution to the rhizosphere (Fig. 

77 1) (Keeratiurai, 2013; Benke & Tomkins, 2017; Lakhiar et al., 2018). Within the context of 

78 aeroponics, an aerosol is an ensemble of solid particles or liquid droplets suspended in a 

79 gas phase (Hinds, 1999). In nature, plants including epiphytic orchids and bromeliads 

80 absorb naturally occurring aerosols such as mist through leaves and aerial roots (Zotz & 

81 Winkler, 2013). In horticulture, the most commonly used aerosol generation technology is 

82 high pressure atomisation, where high pressure liquids are forced through a small orifice, 

83 breaking the liquid stream into droplets. This typically generates aerosol droplets of 10-100 

84 m (Lakhiar et al., 2018). Other atomization methods include inkjet printer droplet on-
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85 demand generators, low pressure atomisation, and ultrasonic atomisation, which generate 

86 varied droplet size distributions (Reis et al., 2005; Lakhiar et al., 2018).

87 Aerosol deposition, capture and nutrient uptake on the root surface

88 We propose that aeroponic cultivation involves a cycle of aerosol deposition and capture 

89 (Fig. 2a, b). We reason that aerosol droplets become deposited on the root surface, and 

90 coalesce to form a thin, nutrient-dense aqueous film (Fig. 2a). The mechanisms of nutrient 

91 and water uptake during hydroponic and aeroponic cultivation might be similar, because 

92 both involve interaction between an aqueous nutrient solution and plant root. We predict that 

93 root surface thin-film formation is likely governed by aerosol composition, plant root 

94 architecture and environmental properties (Table 1).

95 The thickness of known biological thin-films, such as bacterial biofilms and alveolar 

96 surfactants, range from micrometres to millimetres (Murga et al., 1995; Adams & McLean, 

97 1999; Siebert & Rugonyi, 2008). Therefore, we reason that root surface thin-films might 

98 occupy this range. However, root surface aerosol droplet capture and thin-film formation is 

99 likely to be dynamic and have spatiotemporal heterogeneity (Fig. 2a, b). Mathematical 

100 modelling and experimentation with Artemisia annua hairy root cultures predicts that aerosol 

101 droplet size, root architectural properties and root hairs influence droplet deposition and 

102 aerosol capture efficiency (Wyslouzil et al., 1997). Aerosol droplets < 2 μm are thought 

103 unlikely to deposit on the root surface, whilst the deposition efficiency of droplets > 2 μm 

104 increases with greater droplet size (Wyslouzil et al., 1997). Root hairs increase droplet 

105 capture efficiency compared with hairless roots (Wyslouzil et al., 1997).

106 Investigation of the formation, thickness, composition and residency times of aeroponically-

107 produced root surface thin-films could allow aeroponic cultivation systems to be tuned for the 

108 optimal performance of specific crops (Table 1). It would be informative to assess the 

109 interplay between these parameters during root surface thin-film formation and retention for 

110 different crops. This might inform aerosol delivery regimes and characteristics for specific 
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111 crops at defined developmental stages to ensure water, nutrient and oxygen uptake 

112 supports optimal plant performance.

113 Productivity within aeroponic cultivation

114 Yields from aeroponic cultivation can exceed compost or hydroponic cultivation for certain 

115 crops (Wyslouzil et al., 1997; Souret & Weathers, 2000; Ritter et al., 2001; Hayden et al., 

116 2004; Kratsch et al., 2006; Chandra et al., 2014). One study reported that yields of 

117 aeroponically cultivated basil, parsley, cherry tomato, squash, bell pepper and red kale 

118 increased by 19%, 21%, 35%, 50%, 53% and 65% compared to soil culture, respectively  

119 (Chandra et al., 2014). Greater saffron bulb growth and unaltered saffron yield has also 

120 been reported under aeroponic horticulture (Souret & Weathers, 2000). Aeroponic cultivation 

121 was also reported to achieve greater tomato fruit mass when aeroponic and hydroponic 

122 cultivation was compared directly (1.95 g/fruit from aeroponics; 1.56 g/fruit from 

123 hydroponics) (Wang et al., 2019).

124 The effectiveness of root crop cultivation by aeroponics depends upon crop variety and 

125 method of cultivation. One study reported a mean root storage increase of more than 20 g 

126 dry weight for cassava cultivated aeroponically compared with drip hydroponic cultivation 

127 (Selvaraj et al., 2019). Another reported potato tuberization to occur 6-8 days earlier than 

128 during aeroponic cultivation (Chang et al., 2012). On the other hand, a separate study 

129 identified that whilst potato minituber yield increased by 70% compared with hydroponic 

130 cultivation, the mean tuber weight was 33% lower (Ritter et al., 2001). In that study, delayed 

131 tuberization only allowed one productive cycle over a year, compared with two productive 

132 cycles for hydroponically grown potatoes (Ritter et al., 2001). Furthermore, whilst aeroponic-

133 cultivated burdock was reported to accumulate 49% more aerial biomass compared with soil 

134 cultivation, the harvestable root biomass was unaltered (Hayden et al., 2004). We speculate 

135 that differences between these studies might arise from differing cultivation platforms and 

136 environmental- and genotypic variability. For example, (Ritter et al., 2001) attributed delayed 
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137 tuber formation to enhanced vegetative growth caused by an unlimited nitrogen supply, 

138 whilst (Chang et al., 2012) and (Tokunaga et al., 2020) identified variation between tuber 

139 yield of distinct potato and cassava cultivars during aeroponic cultivation. Therefore, it would 

140 be informative in future to compare and understand the performance of different varieties of 

141 specific crops cultivated aeroponically, under various environmental conditions, to identify 

142 traits compatible with aeroponic cultivation in particular climates.

143 Root zone oxygen, plant productivity and aeroponic cultivation

144 Root zone aeration supports plant productivity by allowing root respiration (Fig. 3a) 

145 (Armstrong, 1980; Soffer et al., 1991). Reduced root zone oxygen decreases yield, growth 

146 rates, mineral and water uptake (Rosen & Carlson, 1984; Tachibana, 1988; Soffer et al., 

147 1991). In closed growing systems, aeration also prevents the release of gaseous hormones 

148 such as ethylene that can inhibit growth (Weathers & Zobel, 1992; Raviv et al., 2008). 

149 Aeroponic systems provide the advantage that roots can, theoretically, access all available 

150 root zone oxygen, whereas in hydroponic culture, the low water solubility of oxygen means 

151 that dissolved oxygen concentrations may need to be closely monitored when cultivating 

152 certain plant species to ensure that dissolved oxygen concentrations do not become limiting 

153 for plant growth (Jackson, 1985; Goto et al., 1996; Ritter et al., 2001; Wang & Qi, 2010; 

154 Mobini et al., 2015; Gopinath et al., 2017). This can be optimized during hydroponics 

155 through regular nutrient solution cycling, or bubbling oxygen into the nutrient solution (Fig. 

156 1).

157 Aeroponics allows artificial elevation of root zone O2 to enhance yield. One study identified in 

158 tomato and cucumber a positive linear relationship between root zone O2 concentration and 

159 growth rates, when root zone gaseous O2 increased between 5% (v/v) and 30% (v/v), 

160 plateauing above ~35% O2 (v/v) (Nichols et al., 2002). However, to evaluate the viability of 

161 this strategy it would be helpful to gain better understanding of the relationship between O2 

162 concentration and growth rate for other aeroponic-cultivated species. 
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163 Relationship between root zone temperature and CO2 within aeroponic cultivation

164 In vertical farms, high root zone temperatures inhibit root growth and cause nutrient 

165 deficiency, reducing photosynthetic efficiency (Tan et al., 2002; He et al., 2007; He et al., 

166 2010; He et al., 2013; Choong et al., 2016). This inhibition can be reversed in aeroponic 

167 horticulture by root zone cooling or CO2 supplementation (Tan et al., 2002; He et al., 2010; 

168 He et al., 2013). For example, cooling the root zone of aeroponic-cultivated lettuce to 20°C 

169 increased root surface area and root/shoot mineral content compared with plants grown at 

170 tropical temperatures (23 - 38°C) (Tan et al., 2002), and similar root-zone cooling in tropical 

171 greenhouses increased lettuce shoot yields (Choong et al., 2016). Furthermore, root zone 

172 CO2 supplementation of aeroponically grown lettuce, with root zone temperatures of 20 - 

173 38°C, increased the Rubisco concentration and protected plants against photoinhibition, 

174 potentially due to increased NO3
- uptake (He et al., 2013). This increased the dry weight of 

175 lettuce shoots and roots by 1.8 and 2.5-fold, respectively, but decreased the shoot:root ratio 

176 at CO2 ≥ 10,000 ppm (He et al., 2010). Therefore, adjusting the root zone temperature and 

177 CO2 concentration can improve growth, mineral uptake and nutritional content.

178 Root exudation and microbial interactions during aeroponic cultivation

179 Plants release an estimated 20% of assimilated carbon as root exudates, which includes 

180 high and low molecular weight compounds that can inhibit or benefit growth (Kuzyakov & 

181 Domanski, 2000; Badri & Vivanco, 2009; Baetz & Martinoia, 2014; Delory et al., 2016; 

182 Mommer et al., 2016; Huang et al., 2019). It is important to understand the effects of root 

183 exudation during aeroponic cultivation because the nutrient solution is recycled for some 

184 time within closed systems (Fig. 3a). For example, plant autotoxicity can arise from exuded 

185 organic acids within recycled nutrient solutions (Yu & Matsui, 1993; Yu & Matsui, 1994; Asao 

186 et al., 2003; Hosseinzadeh et al., 2017). However, little is known about the types, 

187 concentrations and variation in recycled root exudates for distinct crop species grown using 

188 aeroponic systems, and its consequences for plant performance. Because the physical and 
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189 chemical properties of nutrient solutions alter when atomized into aerosols (Hinds, 1999), 

190 root exudates might alter chemically or precipitate, changing the effects of exudates on plant 

191 and/or microbial growth. Plants also release volatile organic compounds (VOCs) into the root 

192 zone (Dudareva et al., 2006; Widhalm et al., 2015; Delory et al., 2016; Pickett & Khan, 2016; 

193 Vivaldo et al., 2017) that might partition into the aerosol phase (Odum et al., 1996; Sander, 

194 2015) and, therefore, incorporate autotoxic compounds into aerosol droplets (Fig. 3a). 

195 Incorporation of VOCs into aerosol droplets will change the aerosol vapour pressure, 

196 potentially altering the concentrations of nutrients delivered to the roots. Since root exudate 

197 compounds such as the polysaccharide xyloglucan increase substrate cohesion (Galloway 

198 et al., 2018), exudate compound(s) might alter thin-film retention and nutrient uptake by 

199 changing cohesion and adhesion characteristics at the interface between thin-films and root 

200 surfaces (Fig. 2b, Fig. 3a).

201 Root exudates are important for microbial growth and shaping rhizosphere microbial 

202 communities (De-la-Peña et al., 2008; Chaparro et al., 2014; Hugoni et al., 2018; Sasse et 

203 al., 2018). There are relatively few studies of root microbiome development during aeroponic 

204 cultivation (Fig 3a). One recent study identified that the root-associated microbial community 

205 of aeroponically grown-lettuce was dominated by proteobacteria and distinct from microbial 

206 communities present on the germination trays or nutrient solution (Edmonds et al., 2020). 

207 Given that some bacterial species are unculturable after aerosol dispersion (Reponen et al., 

208 1997; Dabisch et al., 2012; Zhen et al., 2013) and each atomization method affects bacterial 

209 membrane integrity and cell survival differently (Fernandez et al., 2019), more extensive 

210 characterization of microbial communities at the root-aerosol interface and within the nutrient 

211 solution will be informative. This might identify beneficial or inhibitory effects of these 

212 microbial communities upon the aeroponic productivity, for a variety of crops throughout their 

213 development. This could inform the development of probiotic microbial treatments to support 

214 biofertilization and biocontrol, including protection of the crop and aeroponic system from 

215 invasion by human and plant pathogens. One method to introduce such probiotics could be 
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216 to inoculate the seeds at the point when they are moistened to break dormancy and induce 

217 germination.

218 Root morphology and anatomy in aeroponic cultivation

219 Root morphology and architecture affects aerosol capture and thin-film formation. For 

220 example, aeroponically grown roots can have increased root hair abundance compared with 

221 hydroponically grown roots (Kratsch et al., 2006), which will in turn influence aerosol capture 

222 (Fig. 3b). Given that root hair development is both dynamic and influenced by environmental 

223 heterogeneity and the nutrient or water status of plants (Gilroy & Jones, 2000; Vissenberg et 

224 al., 2020), it will be valuable to assess how root hairs develop on aeroponically-grown plant 

225 species at a variety of developmental stages. More research is required to establish which 

226 microscale and/or macroscale root traits are important for aerosol capture at various 

227 developmental stages, considering differences between crops. This knowledge might 

228 influence the aerosol properties (e.g. droplet size) and nutrient dosing regimen that are 

229 administered at each developmental stage to optimize aerosol capture and nutrient- and 

230 water-uptake.

231 Because the anatomy of root cell layers influences nutrient and water uptake (Enstone et al., 

232 2002), it is important to understand how root anatomy might be influenced by aeroponic 

233 cultivation. For example, the exodermal hydrophobic barriers differ between the maize root 

234 hypodermis following aeroponic and hydroponic culture (Fig. 3b) (Zimmermann & Steudle, 

235 1998; Freundl et al., 2000; Meyer et al., 2009; Redjala et al., 2011). Hydroponically grown 

236 maize roots lacked exodermal hydrophobic barriers, whilst hydrophobic barriers were 

237 present in the exodermis, 30 - 70 mm from the root tips, following aeroponic cultivation  (Fig. 

238 3b) (Zimmermann & Steudle, 1998). Greater depth of knowledge of root anatomical 

239 specializations during aeroponic culture would be informative across a wider range of crops, 

240 at various developmental stages. We speculate that species with thicker hydrophobic 
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241 barriers might require longer aerosol atomisation periods, using droplets containing greater 

242 nutrient concentrations.

243 Diel cycles and photoperiod in aeroponic cultivation

244 The light conditions in indoor farms can be tuned to crop requirements. For example, the 

245 photoperiod influences the growth and development of many plant species (Turner et al., 

246 2005; Song et al., 2015). Since the light spectrum influences the morphology and metabolite 

247 content, altering the spectrum can adjust the shape, flavour, fragrance or nutrient content of 

248 vertically farmed crops (Darko et al., 2014; Dou et al., 2017; Fraser et al., 2017; Holopainen 

249 et al., 2018).

250 The specificity in the timing and intensity of aeroponic nutrient dosing provides opportunities 

251 to align daily aeroponic and lighting regimes for optimal growth (Fig. 3a). Daily fluctuations in 

252 fertilization could be applied, such as day- and night-specific nutrient mixes. This strategy 

253 has been proposed to manipulate the nutrient composition of salad crops (Albornoz et al., 

254 2014), capitalizing on diurnal stomatal opening and transpiration stream activity. By 

255 providing greater nitrogen concentrations to the roots during the dark period and lower 

256 concentrations during the light period, nitrogen over-accumulation within leaves can be 

257 prevented (Albornoz et al., 2014). Diel fluctuations in nutrient concentrations also appear to 

258 increase the yield of some tomato varieties (Santamaria et al., 2004).

259 The relationship between the light/dark cycle and the endogenous circadian rhythm 

260 influences plant growth and development. Laboratory experiments with Arabidopsis thaliana 

261 identified that mismatch between the endogenous circadian period and period of the 

262 day/night cycle reduces growth and causes mismanagement of transitory starch reserves 

263 (Dodd et al., 2005; Graf et al., 2010). This relationship between circadian rhythms and light 

264 conditions is important for vertical farms. For example, lettuce growth rates can be estimated 

265 from circadian rhythm parameters of the seedlings, and this information used to transfer the 

266 best-performing seedlings from the nursery to the farm (Moriyuki & Fukuda, 2016). This can 
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267 maximise the number of individual plants meeting certain growth criteria (Moriyuki & Fukuda, 

268 2016). Similarly, the timing of artificial light and dark cycles during tomato cultivation 

269 influences tomato growth and survival (Highkin & Hanson, 1954). This might explain why 

270 humans selected for a longer circadian period and later circadian phase during tomato 

271 domestication to higher latitudes with longer photoperiods (Müller et al., 2016; Müller et al., 

272 2018). Therefore, knowledge of circadian biology can be exploited to optimize daily lighting 

273 regimes in vertical farms to maximise productivity. In future, it might be possible to exploit 

274 integrated plant growth models that incorporate knowledge of circadian rhythms (Chew et 

275 al., 2014) to optimize photo- and thermoperiodic conditions for specific vertically farmed crop 

276 varieties.

277 Conclusions and recommendations for future work

278 We conclude by suggesting strategic areas of future research to underpin increased 

279 productivity and sustainability of aeroponic vertical farms.

280 1. Understand why aeroponic cultivation can be more productive than hydroponic or soil 

281 cultivation, to inform crop breeding and farm engineering. Potential testable hypotheses 

282 concern altered photosynthetic performance, oxygen availability, stomatal physiology and 

283 water relations, nutrient supply, carbohydrate partitioning, and resource competition within 

284 the root- and aerial-phases of plants in growing trays. This also involves the identification of 

285 why certain genotypes are better suited to aeroponic cultivation, because this might allow 

286 the breeding of varieties with enhanced performance during aeroponic cultivation or 

287 extension of the range of crops that can be cultivated with aeroponics.

288 2. Understand root developmental architecture under standardized aeroponic conditions for 

289 a key range of crops at a variety of developmental stages, and how this differs from 

290 hydroponic- and soil-based cultivation. Growing conditions reflect the local environment, 

291 technologies and crop varieties, so comparing model crops under standardised conditions 

292 might provide insights to inform cultivation conditions.
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293 3. Understand the relationship between aeroponic droplet size, nutrient content, droplet 

294 deposition and plant performance. This is important to identify aerosol generation technology 

295 or regimes that are appropriate and most profitable for each crop at a variety of 

296 developmental stages. It will also inform optimization of crop quality and nutrition within 

297 aeroponic systems.

298 4. Understand the relationship between aeroponic fertilization and daily (24 h) cycles upon 

299 crop performance. The relationship between daily cycles of environmental conditions (e.g. 

300 lighting, airflow, temperature, humidity), aerosol supply and composition, and crop 

301 metabolism presents opportunities to adjust crop performance, appearance, nutrient 

302 composition and flavour.

303 5. Establish experimental and analytical frameworks for comparison of vertical farming 

304 technologies for a range of crops. Frameworks should collate productivity metrics and 

305 resource consumption to allow assessment of the environmental and economic sustainability 

306 of each technology. This could underpin more rapid technological development and 

307 collaboration towards improved food security.

308 6. Understand the nature and recycling of root exudates within the nutrient solutions of 

309 closed aeroponic systems. This includes identification of recirculated compound types, their 

310 crop species-dependency, chemical and physical changes in exudates caused by aerosol 

311 generation, and crop performance impacts. This is important for greenhouse and vertical 

312 farm engineering, and pairing crops with optimum cultivation technologies.

313 7. Understand how different aeroponic atomization methods affect microbial community 

314 structure at the root-aerosol interface, and the consequences for crop productivity, crop 

315 protection, food safety and farm engineering.
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325 Figure legends

326 Figure 1: Hydroponic irrigation methods include drip irrigation, deep water culture, nutrient 

327 film technique and flood and drain. In drip irrigation systems, a nutrient solution is fed into a 

328 variable growing medium that supports the root system. Deep water culture submerges roots 

329 in nutrient solution, with plants supported by a membrane preventing aerial tissue 

330 immersion. Nutrient film method exposes the bottom of the root bed to a flowing nutrient 

331 solution whilst the top of the root bed remains exposed to air. Flood and drain systems 

332 immerse the root system with a nutrient solution for a period of time. Subsequently, this is 

333 drained and collected into a reservoir to aerate the root bed. Aeroponics atomizes the 

334 nutrient solution, which deposit onto the root surface. Aero-hydro systems atomize nutrient 

335 solution whilst exposing the lower root bed to recirculated nutrient solution. Air pumps are 

336 common during deep water culture and can be added to other systems to increase root zone 

337 oxygen.

338 Figure 2. Models for irrigation cycle and nutrient exchange during aeroponic horticulture. (a) 

339 Proposed aeroponic thin-film replenishment cycle. During the deposition phase, aerosol 

340 droplets deposit onto the root surface. Smaller aerosol droplets might access spaces 

341 between root hairs. Droplets might also collide, gain volume and exit the aerosol, landing on 

342 roots or collecting into the nutrient solution at the bottom of the bed. Retention refers to the 

343 accumulation of thin-films over areas of the root surface that persist for a period of time. 

344 These are likely to be heterogeneous, leading to heterogeneous gas exchange and nutrient 

345 uptake. During the decay phase, thin-films will be removed by evaporation and gravity in a 

346 manner dependent upon root architecture, surface tension and relative humidity. Thin-films 

347 are replenished by generation of further aerosol. (b) Model for nutrient uptake and gas 

348 exchange within an aeroponic system. As aerosol droplets become deposited, the quantity 

349 of gas exchange between the root and the environment will decrease and nutrient availability 

350 increase.
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351 Figure 3. Interactions between aeroponically grown plants and their environment. (a) 

352 Interactions between the aerial and root phases and their environment. Light/dark conditions 

353 and diel nutrient supply cycles might be optimized to enhance plant productivity. The root 

354 zone CO2 and O2 concentrations affect plant productivity and have potential for manipulation 

355 to enhance productivity. Volatile organic compounds (VOCs) released into the root zone 

356 might alter the aerosol properties and nutrient availability. Interactions between root exudate 

357 compounds and nutrient solution ions will affect thin-film development and retention. Root 

358 exudates will shape the aeroponic microbial community and microbial exudates might, in 

359 turn, affect crop productivity and protection. (b) Root architecture and anatomy can differ 

360 between hydroponic and aeroponic cultivation, with aeroponically-cultivated roots having 

361 increased root hair abundance and hydrophobic barriers in the exodermis (shown in red) 

362 compared with hydroponic cultivation.

363
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364

365 Table 1. A variety of factors will influence root thin-film thickness and retention during 

366 aeroponic cultivation. The aerosol phase describes factors that influence airborne aerosol 

367 properties, and the thin-film phase refers to factors that influence the deposition, retention 

368 and decay of root-surface aqueous films. In addition to aerosol physics and chemistry, thin-

369 film thickness and retention will depend upon crop type.

Property Characteristics Outcomes References

Aerosol 
particle size 
distribution

Most atomisation 
techniques will not 
generate a 
monodisperse 
ensemble of 
aerosol. Aerosol 
droplet size may 
change after 
generation.  

Increases in size 
distribution introduce 
variation in 
deposition efficiency 
across the root 
system. Larger 
droplets are more 
likely to deposit on 
roots close to the 
point of aerosol 
generation. 

(Shum et al., 
1993)

(Nuyttens et al., 
2007)

Aerosol 
particle 
velocity

After generation, 
aerosol droplet 
velocity is 
generally likely to 
decrease.

Aerosol particle 
velocity will impact 
the aerosol 
distribution 
throughout the root 
system, impacting 
uniformity of aerosol 
capture efficiency.

(Shum et al., 
1993)

Aerosol 
Phase

Hygroscopicity The chemical 
composition of an 
aerosol will 
determine its 
reaction to 
changes in the 
relative humidity of 
the surrounding 
gas phase. Water 
will evaporate out 
of, or condense 
into, the droplet in 
response to 
imbalances 

Changes in droplet 
size distribution.

Changes to nutrient 
solution electrical 
conductivity and pH.

(Mitchem et al., 
2006)

(Odum et al., 
1996)

(Topping et al., 
2005)
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between the water 
activity of the 
droplet and root 
chamber 
environmental 
conditions.

Electrostatic 
Effects

Some atomization 
processes can 
induce electrostatic 
charges in aerosol. 

Given that both the 
root and aerosol 
phase can have 
charge effects, 
aerosol droplets 
might be repelled or 
attracted to the root 
system.

(Xi et al., 2014)

Evaporation 
rate

Rate of water 
evaporation from 
the thin-film to the 
gas phase.

We predict that 
evaporation of water 
from the thin-film will 
alter pH and 
electrical conductivity 
of thin-film nutrient 
solution.

(Sultan et al., 
2005)

Gravity We speculate that 
at a certain 
volume, the thin-
film will accumulate 
sufficient mass that 
gravity will cause it 
to drip from the 
root.

We speculate that 
gravity effects will 
produce crop-specific 
and developmental 
stage variation in the 
refresh rate of the 
nutrient solution on 
the plant root. 

This is a 
testable 
hypothesis

Root system 
architecture

Spatial 
configuration of all 
roots (primary, 
lateral, accessory 
roots) in three 
dimensions, which 
changes during 
plant development.

Root system density 
and configuration is 
predicted to affect 
aerosol droplet 
capture efficiency, 
thin-film thickness, 
and thin-film 
residency- and 
replenishment rate 

(Wyslouzil et al., 
1997)

(Osmont et al., 
2007)

Thin-film 
Phase

Root hair 
density and 
length

Root hairs are 
tubular epidermal 
protrusions from 
the root surface. 
Root hair 
properties such as 

Increased root hair 
density and length is 
predicted to capture 
droplets more 
effectively than 
glabrous roots or 

(Wyslouzil et al., 
1997)

(Grierson et al., 
2014)
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density and length 
affect the root 
surface area 
available for 
absorption of water 
and nutrients.

roots with shorter/ 
fewer hairs, which 
will affect thin-film 
formation and 
residence time.

Root surface 
properties and 
root exudation 

Topological 
features of root 
surface, and 
variety of 
compounds that 
roots exude by 
passive and active 
processes.  

We predict that root 
surface 
characteristics and 
the root exudate 
mixture will affect the 
formation and 
residency of thin-
films by altering 
adherence/coherenc
e of aqueous 
droplets on the root 
surface.

(Badri & 
Vivanco, 2009)

(Galloway et al., 
2018)

370

371
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