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Abstract 

The application of mathematical modelling to chromatin - mediated gene regulation is gaining 
momentum, but is still surprisingly rare. Here we review examples in which the combination of 
quantitative experimentation and mathematical modelling has given mechanistic insights into the 
processes involved. Examples include recruitment of epigenetic regulators, the establishment and 
maintenance of epigenetic memory, the dynamic cell cycle - dependent changes in chromatin 
binding of epigenetic regulators, and the contribution of 3D genome architecture to cell identity. 
The successful combination of theory and experiment requires tractable experimental systems in 
which quantitative measurements and precise perturbations are possible. The advent of single cell 
technologies and genome editing presents an unprecedented opportunity for combining 
quantitative experiments, precise perturbation and modelling, that in future will enable new 
epigenetic data to be embedded in a coherent theoretical framework. 

Introduction  

If publication rate is an indicator of scientific activity, then the field of epigenetics has seen a 
dramatic increase in activity over the last 20 years (Figure 1). Epigenetic processes have been 
implicated in many human diseases [1-5] and “epigenetic drugs” are entering the clinics 
www.insightpharmareports.com/. The field is moving rapidly, but does this mean we are 
progressing towards understanding? Surprisingly, despite the vast amounts of epigenetic data that 
have been generated, we are still far from a quantitative mechanistic understanding of many 
epigenetic phenomena. 

Although the term “epigenetics” is itself still the subject of healthy debate [6], there are two 
definitions that are relevant for the purposes of this review. The definition proposed by Ptashne and 
Gann [7] of epigenetic regulation as “a change in the state of expression of a gene that does not 
involve a mutation, but that is nevertheless inherited in the absence of the signal (or event) that 
caused that change“ has informed a large body of work on modelling epigenetic memory and 
switching. A broader definition proposed by Bird [8] of epigenetics as “the structural adaptation of 
chromosomal regions so as to register, signal or perpetuate altered activity states”, also provides a 
useful framework within which to consider models for targeting epigenetic regulators, and large 
scale chromosome architecture. Within both of these definitions, epigenetic regulatory systems 
share several key features: they are complex, comprising multiple molecular components that 
regulate many genomic targets; they are dynamic, allowing flexibility in reaction to environmental, 
developmental or disease signals; and they involve stochastic processes, such that the output of 
a given epigenetic regulatory event can vary from cell to cell, over time, and from individual to 
individual. 

Given these properties, the application of mathematical modelling to epigenetics clearly has 
immense potential. Indeed, we have reached a stage at which it is very difficult to make sense of 
the biology of epigenetics without a coherent theoretical framework. The crisp formalism of 
mathematics imposes a requirement for clear conceptualisation, which is greatly needed in the field 
of epigenetics. However, the number of papers in which modelling is applied to epigenetic 
questions, although growing steadily, has not increased at the same explosive rate as those in the 
field of epigenetics in general (Figure 1). Interestingly, the idea of modelling epigenetic phenomena 
is almost as old as the concept of epigenetics itself [9, 10]. In this review we cover some of the key 
recent advances in the application of mechanistic mathematical modelling to quantitative 
experimental data in epigenetics. We highlight examples in which the insights gained would not 
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have been possible without modelling, and identify future directions in which the combination of 
theory and experiment will greatly accelerate our progress in understanding epigenetics. The 
following sections give examples of different types of modelling that have given insights into 
various epigenetic questions, summarised in Figure 2. 

Genome- wide distribution: from correlation to mechanism  

The advent of “omics” technologies has provided a vast amount of data enabling correlations to be 
drawn between DNA sequence, chromatin immunoprecipitation (ChIP) - based profiling of specific 
factors and histone modifications, and transcription status, to address the questions of what is 
where in the genome. Machine learning approaches have been extensively used to segment 
chromatin states beyond the original microscopy based classification into eu - and heterochromatin 
[11-14]. Further developments have seen data mining and modelling combined to generate 
predictive testable hypotheses, giving mechanistic insight into why chromatin binding proteins or 
chromatin modifications are where they are, and what are the consequences of their being there 
[15,16]. 

For example, [15] distinguishes direct from indirect interactions in large ChIP- seq data sets. 
Genome wide profiles for related chromatin binding proteins are usually highly correlated. For 
example for a complex consisting of three members (A, B, and C) that binds a histone modification 
(D), the four ChIP profiles (A-D) will be highly correlated.  However if (A) binds directly to (D) then 
the correlation between the profiles of (A) and (D) will be higher than for any other pair. Complete 
and partial correlations were used to classify interactions as likely to be direct or indirect for a large 
set of chromatin binding proteins and modifiers. Several of the interactions thus identified were 
confirmed by previous studies, and several newly predicted interactions were confirmed 
experimentally, for example a new link between H4K20me1 and specific Polycomb group proteins. 
Thus by elegant analysis of large data sets, mechanistic properties beyond correlation can be 
discovered.

Several studies have used machine learning to extract DNA sequence principles that are predictive 
for binding of epigenetic regulators [17-21], reviewed in [22]. A very valuable aspect of DNA-based 
predictions, in which particular motifs contribute to a high predictive score, is that they are 
amenable to precise experimental tests. For example, a motif (GTGT) predicted computationally to 
be important for the function of Drosophila Polycomb Response elements (PREs) [17], was shown 
in transgenic assays to be essential for PRE function [23]. Later genetic and biochemical assays in 
Drosophila identified the protein (Combgap) that binds directly to this motif and is indeed essential 
for PRE regulation [24]. This example, involving several labs over a period of more than 10 years, 
illustrates the full circle of computational prediction, perturbation and experimental validation, 
leading to mechanistic insights. 

The GTGT motif may also provide a bridge to the elusive question of sequence principles of 
mammalian PREs. The long-held belief that vertebrate Polycomb group proteins are recruited to 
CpG islands via the GC rich sequences they contain (reviewed in [22]) was challenged recently by 
a combined computational and experimental analysis of DNA sequences at sites that recruit PRC2 
(Polycomb Repressive Complex 2) in Xenopus embryos [20]. These sites were found to be GC 
poor, and to contain many other motifs, including GTGT repeats. The important feature in common 
between the frog and mammalian sites is that they are unmethylated. Thus vertebrate PcG 
proteins need an unmethylated island to bind, and the question of which DNA features specifically 
recruit them is still open (reviewed in [22]). However, although sites of potential epigenetic 



regulation are defined directly or indirectly by DNA sequence [22, 25, 26], whether a given 
regulator does or does not bind at a given site depends on the developmental and transcriptional 
changes that make one cell different from another. Thus, models that integrate information over 
several stages of differentiation may give a more complete picture. For example in [21], DNA 
sequences and transcription factors that target mouse PcG proteins were identified by their 
dynamic recruitment of PcG proteins during differentiation of ESCs into neural lineages. 

The above studies [17, 20, 21] have in common that they started with a computational prediction 
based on DNA sequence, and validated predictions in functional reporter assays. Several 
independent studies have recently questioned the reliability of data generated by ChIP-seq, 
showing that active promoters can give misleadingly high signals and urging caution in 
interpretation [27-30]. This underlines the importance of independent functional assays for any 
given sequence of interest, and reminds us that the only unambiguous genome-wide data set is 
DNA sequence itself. 

Locus-specific regulation: stochastic models for memory and switching

The mechanistic nature of epigenetic memory storage at specific loci is a central issue in the field 
but one which has proved difficult to elucidate. In part this has been due to the prevalence of whole 
genome analyses. Such approaches typically generate correlative information, often based on 
datasets which include both memory-storing and non-memory storing loci, making firm conclusions 
about memory elusive. In particular, it has been difficult to assess which local factors could be 
causative memory elements, as opposed to being downstream consequences of particular 
transcriptional states [31, 32]. Recent experiments on the Polycomb Repressive Complex 2 
(PRC2) silencing system at a whole chromosome level [33], and using dual fluorescent imaging at 
a single locus [34], have shown that epigenetic memory can be stored locally in the chromatin in 
cis. However, exactly which features are strictly required to generate stable cis-based memory has 
remained unclear.

In this context, mathematical modelling has been of vital importance in probing how stable memory 
can be created. Although epigenetic dynamics can be dauntingly complex, modelling excels in 
reducing such dynamics to their core ingredients. Such appropriately simplified models of 
epigenetic dynamics mediated by histone modifications were first introduced by [35]. Epigenetic 
dynamics at a single locus were abstracted down to the stochastic dynamics of activating (A) or 
silencing marks (M), together with an unmarked intermediate U. As originally applied to the yeast 
mating type locus, M marks represented the histone modification H3K9me. Feedback from the 
marks were then introduced such that M marks tended to add more M marks nearby and also 
removed A marks. The A marks were assumed to possess similar self-reinforcing dynamics. With 
the added ingredient of long-range interactions between marks, such dynamics were shown to 
generate bistable (ON/OFF) states, either predominantly M covered or A covered. Importantly such 
states were highly resistant to fluctuations, particularly at DNA replication where the coverage of 
marks is (on average) halved representing random partitioning of the marks onto the two daughter 
DNA strands. Because of the inherent feedbacks in the system, newly inserted unmarked U 
intermediates are rapidly converted into either M or A, whichever previously predominated, thereby 
stably re-establishing the memory state. Variations of the above model have been extensively 
studied theoretically [36, 37].



Conceptually similar models have also been applied to the establishment and inheritance of DNA 
methylation patterns [38-40]. These studies show that by adapting an existing model to a new 
biological question, novel insights can arise. DNA methylation at individual CpGs was thought to be 
independent of other CpGs. However, by comparing simulations to data on the genome wide 
distribution of CpG methylation, the authors could explain the observed patterns only by 
introducing cooperativity and dynamic feedback between methylated (or unmethylated) CpGs [38, 
39]. Furthermore the observed relationships between CpG cluster size and methylation status 
could be accounted for by including nucleosome occupancy in the models [40]. These conceptually 
simple models thus make experimentally testable mechanistic predictions in a field that has 
traditionally built hypotheses in the absence of theoretical analysis.

Locus-specific models have also been applied more directly to experiments [41-43]. However, 
perhaps the best established application of modelling, and the first to try to fuse modelling directly 
with experiments, was in the PRC2-based plant vernalization system [44]. Exposure to winter cold 
had long been known to generate a quantitative, epigenetically-stable downregulation of the floral 
repressor gene FLC. Importantly, a combined experimental-modelling approach, showed that this 
quantitative downregulation was actually a population level effect, with individual loci adopting a 
digital ON/OFF status with the fraction of PRC2-silenced OFF loci increasing with cold duration. 
Modelling of this system, where the M mark now represented the H3K27me3 silencing 
modification, also allowed various aspects of the switching process to be elucidated, with switching 
from one epigenetic state to another mediated through a nucleation and spreading mechanism [44, 
45]. The FLC system is continuing to generate powerful insights, both experimentally, for example 
through the dual labelling approach mentioned above [34] and also by inspiring new models. In the 
latter category, it has recently been proposed that transcription itself may act to antagonise the M 
marks of the silenced state without the need for activating A marks [46]. Such models also allow 
long-ranged interactions to be dispensed with, potentially important in preventing ‘runaway’ 
spreading of marks across whole genomes [47]. Integrating transcription and cis feedbacks in a 
single framework also permits the simultaneous study of cis-based bistable dynamics together with 
more traditional, continuously-varying transcription factor based regulation.   

The FLC system is an excellent model for epigenetic memory for many reasons, one of which is 
that the stimulus (cold) and the switch in epigenetic status at a population level occur over long 
time periods (weeks to months) and so can be captured experimentally with time course ChIP 
experiments. An alternative system to study epigenetic switching over faster time scales has 
recently been described [43]. The authors used a reporter gene expressing a fluorescently tagged 
protein in combination with induced recruitment of different epigenetic regulators, to image 
epigenetic memory and switching in real time in individual mammalian cells. A phenomenological 
3-state model based on “active” (A), “reversible silent” (R), and “irreversible silent” (I) states was 
implemented. This model is conceptually different from the three state models of [35, 44, 45], 
where the A, U and M marks represent histone modifications, fundamental components of the 
mechanism of activation or silencing. In contrast, the three states in the model of [43] represent the 
active or silent states themselves, without explicit reference to the activating or silencing 
mechanism. This model is nevertheless sufficient to recapitulate the data and enabled extraction of 
the conversion rates between these states for the different regulators, with timescales ranging from 
hours to several days. This synthetic system offers an elegant and tractable framework within 
which to perform controlled experiments and quantitative modelling.
 
Both this study [43] and the FLC studies described above [34, 44] show experimentally that 
epigenetically regulated reporter genes have the property of an “all or none” response. Quantitative 



responses to stimuli (in the case of FLC, cold exposure, and in the case of the mammalian study, 
experimentally manipulated levels of chromatin modifying enzyme recruitment), are manifested as 
the proportion of cells in which the gene of interest is on or off. This raises the question of how 
other genes that are subject to epigenetic memory (for example, the Hox genes in Drosophila) 
achieve exquisite developmental precision both in terms of their expression level and their spatial 
patterning [48]. Future models taking spatial patterning into account may help to address these 
issues.  

Global dynamics during the cell cycle

The above studies give insights into locus- specific effects of epigenetic regulation. At the other 
end of the scale are models that address the global behaviour of epigenetic regulators and how 
their interaction with chromatin changes during the cell cycle. Replication and mitosis represent the 
biggest molecular obstacles to epigenetic memory [48]. The events of mitosis are particularly 
tractable to live imaging studies and have been addressed by modelling in combination with 
quantitative kinetic analysis [49, 50]. These models lack information on specific loci but have the 
advantage that large-scale changes in kinetic properties can be addressed in living cells, and in 
living animals, giving mechanistic insights and generating testable hypotheses. For example, in 
[49, 50], absolute quantification was combined with kinetic analysis and ODE (ordinary differential 
equation) modelling for members of the Polycomb (PcG) and Trithorax (TrxG) groups of proteins in 
living Drosophila. This analysis revealed cell-type specific regulated mitotic dissociation, and 
predicted the existence of active and regulated mechanisms to displace and retain PcG and TrxG 
proteins on mitotic chromosomes. Perturbation experiments by tissue specific RNAi [49, 50], and 
mutational analysis of the PcG and TrxG proteins themselves, uncovered molecular mechanisms 
[49, 50], and showed that mitotic attachment of the TrxG protein ASH1 is required for cell identity 
and viability (Steffen et al., unpublished). These studies reveal that a simple model containing only 
three components (a protein, its target site, and the complex between them) can nevertheless 
reveal unexpected insights when combined with absolute quantification. 

The third and fourth dimensions: 3 dimensional genome architecture

Epigenetic regulation occurs within a highly folded genome, in which distant loci may be brought 
close together in 3-dimensional space, and chromosomal segments are constantly moving [51, 52]. 
Interestingly, despite the topological and structural disruptions of replication and mitosis, many of 
these long -range contacts are highly conserved between cell types and species, whereas others 
are highly cell-type specific [53, 54]. Nuclear localization can have profound effects on gene 
expression [55] and disruption of essential contacts can lead to disease [56, 57].

Many properties of DNA and chromosomes can be understood by modelling the DNA or chromatin 
fibre as a flexible polymer [58]. Although this is by no means a new concept [59], the last decade or 
so has seen a rapid expansion of techniques to measure chromosome conformation in whole 
genomes at ever increasing resolution [60], and an accompanying increase in the application of 
biophysical polymer models to the problem of deconvolving these data sets [61]. In the case of “Hi-
C” techniques, static data are generated from a large population of cells, based on crosslinking and 
quantifying DNA sequences that are physically close to each other. Stochastic polymer based 
models have then been developed that generate an ensemble of polymer conformations able to 
reproduce the observed “Hi-C” contact frequency maps. These models aim to discern which local 
features of the polymer are required to explain the data [53, 62-64]. The stochastic nature of these 



models is again crucial: for example, predictions, and experiments using DNA FISH to allow single 
cell resolution, have demonstrated that long-range contacts occur in the context of fluctuating 
structures rather than stable loops. Indeed, several groups have developed imaging based 
techniques to track long- range interactions of specific tagged loci [65-67] (reviewed in [68-70]) or 
labeled histones [52, 71, 72], either in real time or in fixed single cells at high resolution [73]. 
Polymer based simulations have then been used to capture the dynamic nature of the processes 
involved, and to infer properties of the chromatin fiber that change during gene activation [64], 
replication [74], localization in the nucleus or within a topological domain [71], or a change in 
epigenetic status [73]. 

In summary, the application of modelling to 3 dimensional chromatin configurations is currently one 
of the most active areas of synergy between mechanistic modelling and experiments. This 
expansion has been to a large extent driven by the availability of new types of data to which the 
long established field of polymer physics can be productively applied. 

Outlook 

What does the future hold? We hope that there will soon be an acceleration of activity in the 
application of mechanistic modelling to a wide range of epigenetic questions. There has never 
been a better time. New technologies enabling single cell and single molecule analysis are now 
delivering quantitative data in real time at unprecedented resolution [75-80]. This will enable the 
field to move away from population averages and to measure single events in living, developing 
organisms. Furthermore, the advent of technologies for precisely editing the genome and the 
epigenome should now allow precisely designed perturbations of experimental systems [81]. The 
potential for modelling combined with quantitative experiments and precise perturbation is at an 
unprecedented level. However, without a coherent theoretical framework, we risk entering an era of 
single cell omics and editomics without a compass. 

Figure legends. 

Figure 1. Number of publications per year (including reviews) retrieved with the Pubmed search 
term “epigenetic’ (light grey) or “epigenetic AND mathematical model” (dark grey). 

Figure 2. Four aspects of epigenetic and chromatin mediated regulation and the associated 
questions are covered in this review. For each we give examples of the successful combination of 
modelling and quantitative experiments. 
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Figure 1: Epigenetics and mathematical modelling  

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

19
76

 

19
81

 

19
86

 

19
91

 

19
96

 

20
01

 

20
06

 

20
11

 

20
16

 

 1976 - 2016

nu
m

be
r o

f p
ub

lic
at

io
ns

 



Locus- specfic regulation 

Genome - wide distribution  

Genome architecture 

Global dynamics  

How are proteins and histone 
modifications distributed in the genome?

How did they get there?     

How is epigenetic memory stored?

How does a locus switch 
memory states?     

How do epigenetic regulators 
interact with chromatin?

How and why does this change 
during the cell cycle ?     

How is the genome folded in 
3 dimensions?

How is this linked to transcription?

Does 3D structure have memory?     

Figure 2. 
Epigenetic questions that have been addressed by modelling 


	COISB_2016_12_Original_V0-1
	Fig1_Review
	Fig2_Review_CORR

