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a b s t r a c t

Leaf rust, caused by the foliar pathogen Puccinia triticina is a major disease of wheat in the southern
region of Brazil and invariably impacts on production, being responsible for high yield losses. The Bra-
zilian wheat cultivar Toropi has proven, durable adult plant resistance (APR) to leaf rust, which uniquely
shows a pre-haustorial resistance phenotype. In this study we aimed to understand the interaction
between P. triticina and the pre-haustorial APR in Toropi by quantitatively evaluating the temporal
transcription profiles of selected genes known to be related to infection and defense in wheat. The
expression profiles of 15 selected genes varied over time, grouping into six expression profile groups. The
expression profiles indicated the induction of classical defence pathways in response to pathogen
development, but also the potential modification of Toropi's cellular status for the benefit of the path-
ogen. Classical defence genes, including peroxidases, b-1,3-glucanases and an endochitinase were
expressed both early (pre-haustorial) and late (post-haustorial) over the 72 h infection time course, while
induction of transcription of other infection-related genes with a potential role in defence, although
variable was maintained through-out. These genes directly or indirectly had a role in plant lignification,
oxidative stress, the regulation of energy supply, water and lipid transport, and cell cycle regulation. The
early induction of transcription of defence-related genes supports the pre-haustorial resistance pheno-
type in Toropi, providing a valuable source of genes controlling leaf rust resistance for wheat breeding.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

In 2012/2013 Brazilian wheat production reached 5.5 million
tons, of which 94.5% was produced in the southern region of the
country [1]. Leaf rust is a major constraint to wheat production in
this area, causing yield losses of up to 80% [2,3]. Chemical control of
leaf rust in Brazil costs around US$ 30/ha and generally requires
two sprays per crop [4]. In South America lost wheat production
due to leaf rust is estimated to cost the industry 172 million dollars
per year.

Breeding for wheat leaf rust resistance is complicated by the
high level of genetic variation within the Brazilian Puccinia tri-
ticina population, exemplified by the pathogen's ability to rapidly
overcome major resistance genes, resulting in new races [5].
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Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
http://creativecommons.org/licenses/by-nc-nd/4.�0/
mailto:69976@upf.br
mailto:sandra.brammer@embrapa.br
mailto:marcia.chaves@embrapa.br
mailto:jamfito@ufrgs.br
mailto:francesca.stefanato@niab.com
mailto:lesley.boyd@niab.com
mailto:lesley.boyd@niab.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pmpp.2014.12.004&domain=pdf
www.sciencedirect.com/science/journal/08855765
http://www.elsevier.com/locate/pmpp
http://dx.doi.org/10.1016/j.pmpp.2014.12.004
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://dx.doi.org/10.1016/j.pmpp.2014.12.004
http://dx.doi.org/10.1016/j.pmpp.2014.12.004


A. Casassola et al. / Physiological and Molecular Plant Pathology 89 (2015) 49e5450
Therefore, sources of durable APR, such as that found in the
Brazilian cv. Toropi, have considerable value for Brazilian wheat
breeding.

The breadwheat cv. Toropi (Triticum aestivum L.) was released as
a commercial cultivar in 1965 with a partial level of APR to leaf rust
(Fig. 1) which still remains effective despite 50 years of cultivation
[6]. The APR in Toropi is a valuable “slow-rusting” type of resis-
tance, being effective, while producing little or no selection pres-
sure on the pathogen [7,8]. The APR in Toropi also displays a unique,
pre-haustorial phenotype, restricting the formation of the primary
infection structures; stomatal appressoria and sub-stomatal vesi-
cles [9].

Although Toropi is derived from the cultivar Frontana there is no
evidence that it contains the well characterized slow-rusting leaf
rust APR gene Lr34 [10]. Two recessive genes have been reported to
be associated with the leaf rust APR in Toropi, temporary desig-
nated Trp-1 and Trp-2 [10]. Trp-1 and Trp-2 were located to chro-
mosomes 1A and 4D, respectively [11]. In addition to leaf rust APR
Toropi has a number of other agronomically important character-
istics, including increased phosphorous absorption, translocation
and distribution, tolerance to aluminum toxicity [12] and resistance
to Fusarium head blight [13].

To identify the resistance mechanisms, genes and genetic
pathways underlying the slow-rusting leaf rust APR in Toropi
transcriptomics analyses were undertaken, looking at differential
gene expression in Toropi flag leaf tissue at defined time points
after P. triticina inoculation. Leaf tissue was sampled at eight time
points after inoculation, including time points that represented the
early stages of the pathogen's development and the pre-haustorial
resistance in Toropi. The transcript profiles of 15 selected genes,
previously identified as having a role in the cellular interactions
between wheat, and both adapted and non-adapted isolates of the
foliar pathogens causing leaf rust, powderymildew andwheat blast
(L. Boyd, unpublished data), were measured over the eight time
points by quantitative PCR (qPCR). The putative function of these
wheat infection-related genes in the colonization of wheat tissues
by P. triticina and the pre-haustorial, leaf rust APR in Toropi is
discussed.
Fig. 1. Leaf rust phenotype on the wheat cv. Toropi. The adult plant leaf rust resistance
in Toropi is characterized by a mixture of small, off-white to yellow flecks characteristic
of necrotic and chlorotic plant reactions, and by the occasional leaf rust pustule. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
Material and methods

Wheat-P. triticina inoculations and sampling

The wheat cv. Toropi was grown at 14 h light/10 h dark and 80%
humidity until full expansion of the first flag leaf. Flag leaves were
inoculated with urediniospores of P. triticina, race MDT-MR e Lr
virulence: Lr1, Lr3, Lr3ka, Lr10, Lr11, Lr14a, Lr14b, Lr17, Lr20, Lr23,
Lr24, Lr26, Lr30 [14] e in a mineral oil suspension. Mock in-
oculations were carried out using the same mineral oil without
urediniospores. After inoculation plants were maintained at 80%
humidity, in total darkness for 24 h, before being returned to
normal growing conditions. Leaf rust infection was verified 15 days
post inoculation (Fig. 1).

Twelve P. triticina inoculated flag leaves and sixmock-inoculated
flag leaves were collected from individual plants at each of the
following time points; 0, 1, 3, 6, 12, 24, 48 and 72 h after inoculation
(hai). Total RNA was extracted from all flag leaf samples using
RNeasy Plant Mini Kit (Qiagen) and DNA removed using TURBO
DNA-free™Kit (Ambion), according to themanufacturer's protocols.

Selection of candidate infection-related genes and quantitative PCR
analysis

Wheat genes were selected for analysis from a global wheat
transcriptomics study involving inoculation with adapted and
nonadapted isolates of the fungal pathogens Blumeria graminis,
Magnaporthe grisea/oryzae, and P. triticina/hordei (L Boyd; unpub-
lished data). Differentially expressed probe sets were selected from
the Agilent wheat microarray (http://www.genomics.agilent.com)
that represented uniquewheat unigenes. Tenwheat genes (Table 1)
were selected that showed differential transcript profiles across 4
time points (12, 24, 36 and 48 hai) following inoculation with
P. triticina and/or P. hordei (data not shown).

Primers were designed for qPCR using Primer3Plus. Toropi RNA
samples from each time point were converted to cDNA using the
SuperScript™ III First-Strand Synthesis System (InvitrogenTM) ac-
cording to the manufacturer's protocol. PCR amplification levels
were normalized using geNorm (geNorm program v3.5) and three
reference genes, ubiquitin [15], GAPDH and elongation factor-1a
[16]. GeNorm calculates the normalization factor based on multiple
control genes, resulting in more accurate and reliable normaliza-
tion of gene expression data than is normally obtained using a
single gene for normalization [17].

All qPCR were performed using SYBR® Green JumpStart™ Taq
ReadyMix™ (SigmaeAldrich) at 95 �C for 2 min; 40 cycles of 95 �C
for 15 s, 60 �C for 1 min and 72 �C for 15 s; and then 95 �C for 15 s,
60 �C for 15 s and 95 �C for 15 s. The specificity of the reaction was
verified by melt curve analysis and the efficiency of each primer
was checked using the standard curvemethod [16,18]. Primers with
slopes between �3.1 and �3.6, and reaction efficiencies between
90 and 110% were selected for the analysis (Table 1). Primers pre-
viously designed by Tufan et al. [18] for standard defence-related
genes were also assessed (Table 2). The qPCR for each gene, on
each of 3 biological replicates, was repeated 3 times.

Transcript levels of all 15 infection-related wheat genes in
P. triticina inoculated flag leaf tissue were compared to the levels of
transcript in the mock-inoculated control samples, at each time
point, providing relative transcript levels for each gene. Three
biological replicates were analyzed at each time point. The
expression value for each biological replicate was an average of the
normalized technical replicates. Relative expression values of the
three inoculated biological replicates, at each time point were ob-
tained by dividing each biological replicate by the average of the
mock expression values at each time point.

http://www.genomics.agilent.com


Table 1
Agilent probe sets selected for qPCR.

Probe Gene annotation Abbreviation Sequence (forward and reverse) GenBank accession no.

A_99_P156537 glucose-6-phosphate dehydrogenase G6DPH TCGTGTGCAGTTCAAGGATG AB029454
CATGTACATGGCTTCTGATGGC

A_99_P136820 putative zinc transporter ZIP 5 ZIP5 AGTTGGGTATTGTGGTGCAC AK331366
ACATCTGGTGGAAGCTCAAGG

A_99_P589522 caffeic acid O-methyltransferase COMT1 ACGTCGACATGATCATGCTC AY226581
ACTCGATGGCAAATGCGTTG

A_99_P238786 heat shock protein 80 HSP80 TGATTGGCCAGTTTGGTGTC U55859
TGTGCTTGCTGGTCACAATG

A_99_P421267 class III peroxidase PRA2 AACATCAACACTGCCTTCGC AY506496
AGGTTGGTGTAGTAGGCGTTG

A_99_P446157 type 1 non-specific lipid transfer protein precursor LTP TGCCATCGTTGTTGCTATCG TC400994
TGCGTGTATGTGACCTCAAC

A_99_P215566 chlorophyll a/b-binding protein WCAB precursor WCAB TTGTCCAAGCTATCGTCACG TC382127
ACAAAGTTGGTGGCGAATGC

A_99_P624287 aquaporin AQP1 TGGTCAGACCACTGGATCTTC DQ867075
TGGCATCTTCTTTGCAGCAG

A_99_P112790 fructan exohydrolase FREX TTGACACCGAGAAGCATTGC AB089271
TGCACAACAGTTTGCTCCTC

A_99_P105865 retinoblastoma related protein 1 RBR1 TACCGTCAAGCCTTTGTTGG AY941772
TGCATCGCCACCACTTTTTG
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Relative gene transcript levels were analyzed using ANOVA to
identify significant differences between the expression levels of the
15 genes. The Tukey's test was used to determinewhich time points
were significantly different, using the software InfoStat, version
2012 [19]. The relative abundance of gene transcripts at each time
point was compared as a proportion of the total transcript abun-
dance across all time points. This provides a time course transcript
profile for each infection-related gene allowing genes with similar
profiles to be placed in to expression groups.

Results and discussion

P. triticina enters wheat leaf tissues via stomata. Urediniospores
germinate on the leaf surface forming an appressorial swelling
above a stomatal opening within 3 hai. An appressorial hyphae
grows through the stomatal opening, into the sub-stomatal cavity,
where a sub-stomatal vesicle forms by 6 hai [20]. Infection hyphae
develop from the sub-stomatal vesicle and contact with plant
mesophyll cells results in the differentiation of haustorial mother
cells around 12 hai, leading to the formation of haustorial feeding
structures within living plant cells around 24 hai [20,21]. Wesp-
Guterres et al. [9] demonstrated that in Toropi a large proportion
of infection attempts were stopped before the formation of haus-
toria, i.e. pre-haustorial resistance. Significantly fewer appressoria
developed on Toropi compared to the susceptible wheat genotype,
with a significantly smaller number of these appressoria going on
to form sub-stomatal vesicles, infection hyphae and haustorial
mother cells. Plant cell death, measured by trypan blue staining,
was associatedwith up to 37% of attempted infection sites in Toropi,
but not until much later in the infection process (120 hai), after
P. triticina ingress had been halted [9].

Transcript analysis of ten selected infection-related genes
(Table 1), plus 5 common defence-related genes (Table 2) in Toropi
Table 2
Primer sequences used for qPCR of common defense-related genes.

Target Gene annotation Forwa

PR1 b-1,3-glucanase CAATA
PR2 b-1,3-glucanase AAGCA
PR4 Endochitinase AAGTG
PR9 Peroxidase CAAGG
PR10 Phenylalanine ammonia-lyase CAAGA
at 8 time points after inoculation with P. triticina showed that the
genes broadly grouped into six expression profiles (Fig. 2).

Profile 1 included a glucose-6-phosphate dehydrogenase
(G6DPH), a putative zinc transporter (ZIP5), a heat shock protein 80
(HSP80), a fructan exohydrolase (FREX), a retinoblastoma related
protein 1 (RBR1) and PR10 (Fig. 2). These six genes exhibited fairly
constant expression throughout the 72 h time course, with no
significant differences being found across time points (Table 3;
Supp. Fig. 1). Although FREX appeared to exhibit slightly higher
levels of gene transcription at 12 hai (Fig. 2), this was not significant
(Table 3). The plant Lipid Transfer Protein (LTP) and caffeic acid O-
methyltransferase (COMT1) genes were identified as significantly
different by the ANOVA analysis, so were placed in separate groups,
Profile groups 2 and 3, respectively (Fig. 2). LTP peaked at 1 and 12
hai and COMT1 peaked at 24 hai (Table 3, Fig. 2).

While expression of these eight genes (Profiles 1, 2 and 3)
occurred throughout the P. triticina infection time course, these
genes may still play an important role in plant defence (Supp.
Fig. 1). The well characterized pathogenesis-related gene PR10
encodes a phenylalanine ammonia-lyase (PAL), the first enzyme in
the phenyl propanoid pathway, being required for the biosynthesis
of flavonoids, phenyl propanoids and lignin. LTPs transport lipids
across membranes and have been implemented in plant defence,
having antibiotic properties [22] and through the creation of me-
chanical barriers such as cutin [23]. Moreover, as pathogen infec-
tion damages the cell wall and associated membrane, lipid
transport would be required for tissue repair. COMT1 catalyzes key
steps in the biosynthesis of monolignols, precursors of plant lignin.
Two distinct methyltransferases are responsible for the methyl-
ation of lignin precursors: caffeic acid 3-O-methyltransferase and 5
hydroxyferulic acid. Lignin is a phenolic cell wall polymer cova-
lently linked to the cellulose and hemicellulose components of the
plant cell wall, and has been shown to assist in the transport of
rd primer Reverse primer

ACCTCGGCGTCTTCATCAC TTATTTACTCGCTCGGTCCCTCTG
CTTTGGGCTGTTCAATCCG CCAGGCAGCTTATTCGAACGCAAA
CCTCCAGGTGACGAA TGCACTGGTCGACGATCCT
TGAACTCGTGATGGA TTGAGGATTCAACCGTCGTT
TGGTCGAGGCTTACC CGAAGTCGATCATGAAGCAA



Fig. 2. Gene expression profiles in the wheat cv. Toropi in response to Puccinia triticina infection. Each bar represents one gene and the colors the relative transcript levels of that
gene at each time point. Time points are hours after inoculation (hai). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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water and nutrients [24], as well as having a significant role in plant
defence [25]. Lignification has been shown to be a significant
defence mechanism in wheat to the stripe rust pathogen Puccinia
striiformis f. sp. tritici [26], so may have a similar role in leaf rust
resistance.

G6DPH helps maintain the levels of the co-enzyme NADPH, an
important reducing agent that helps protect cells against oxidative
damage through the maintenance of glutathione levels. ZIP5 is
involved in zinc transport, zinc-superoxide dismutase being
important in antioxidant defence [27e29]. Heat shock proteins,
such as HSP80 function as molecular chaperones and play a critical
role in protein folding and intracellular trafficking of proteins, in
particular under heat and other stresses. FREX may release energy
required to combat pathogen infection by removing terminal
fructose molecules from fructans [15,30]. RBR1 controls the cell
cycle transition from G1 to S and an increased expression of this
protein in response to stress indicated that plants regulate the
cytoskeleton, cell division and cell wall extension to survive [31].

Alternatively these genes could be up-regulated by P. triticina to
aid the pathogen ingress and development, providing a preferred
Table 3
Expression levels of all 15 selected genes analyzed with ANOVA and Tukey's test.

Time
points

Profile 1 Profile 2 Profile 3

G6DPH ZIP5 HSP80 FREX RBR1 PR10 LTP COMT1

0 hpi 0.45a 0.60a 0.52a 0.46a 0.31a 0.45a 0.26a 0.18a

1 hpi 0.77a 0.61a 1.13a 1.19a 1.19a 0.86a 1.47b 0.60ab

3 hpi 0.55a 0.39a 0.47a 1.32a 0.91a 0.94a 0.68ab 0.52ab

6 hpi 0.42a 0.59a 1.04a 0.15a 0.47a 0.87a 0.35a 0.32ab

12 hpi 1.00a 0.87a 0.55a 2.64a 1.44a 0.91a 1.47b 0.70ab

24 hpi 0.76a 0.71a 0.86a 0.74a 0.89a 0.81a 1.04ab 1.00b

48 hpi 0.69a 1.06a 0.59a 0.82a 0.99a 0.50a 0.51a 0.56ab

72 hpi 0.95a 0.72a 1.47a 1.24a 0.32a 1.74a 0.91ab 0.57ab

Time
points

Profile 4 Profile 5 Profile 6

WCAB AQP1 PRA2 PR2 PR9 PR1 PR4

0 hpi 2.73ab 0.85a 0.78a 2.33a 0.33a 0.15a 0.39a

1 hpi 2.78ab 1.66ab 0.62a 0.84a 0.74a 0.39a 0.75a

3 hpi 0.85a 1.44ab 0.39a 0.98a 0.69a 0.56a 0.91a

6 hpi 0.05a 0.37a 146.47b 8.72b 57.35b 0.67a 1.47a

12 hpi 6.82b 2.88b 0.96a 0.79a 1.75a 0.62a 1.06a

24 hpi 0.57a 0.57a 0.28a 0.47a 0.40a 0.51a 1.29a

48 hpi 1.01a 0.64a 0.59a 0.64a 0.78a 0.64a 0.69a

72 hpi 0.62a 1.48ab 1.67a 3.85a 1.70a 10.11b 4.98b

a, b Expression values within rowsmarked with different lower case letters are those
that differ significantly according to Tukey's test (a < 0.05).
carbohydrate source in the release of fructose, a supply of reducing
energy in the form of NADPH, and zinc for fungal growth and
metabolism. While the pathogen may recruit plant LTPs for the
production of fungal membranes associated with fungal structures
such as haustoria, maintaining the nutrient supply to the fungus
[32], or manipulate plant cell division for its own ends.

AQP1 andWCAB peaked at 12 hai (Fig. 2e Profile 4; Supp. Fig.1).
Aquaporins (AQP1) are integral membrane proteins, part of a larger
family of major intrinsic proteins (MIP) which form pores in cell
membranes. The plasma membranes of both animal and plant cells
contain aquaporin pores through which water can flow more
rapidly than by diffusion through the phospholipid bilayer. Aqua-
porins selectively conduct water molecules in and out of the cell,
while preventing the passage of ions and other solutes. P. triticina
effectors may stimulate AQP1 expression to increase aquaporin
pore formation, thereby allowing a greater flow of water within the
plant cell in readiness for haustorial development. On the other
hand, some isoforms of aquaporins are known to facilitate H2O2
transport across the cell [33], having a role in tolerance to abiotic
stresses such as drought, salt and cold [34,35]. AQP1 may therefore
have an indirect role in fungal defence, as H2O2 serves as a signal
molecule for induction of pathogenesis-related (PR) proteins
leading to the accumulation of phenyl propanoid compounds and
ROS detoxifying enzymes [36,37].

WCAB is part of the photosystem II complex in chloroplast. The
light-harvesting complex (LHC) in plants is formed by chlorophylls
A and B, and these chlorophyll AeB binding proteins, being involved
with adhesion of granal membranes and photo-regulation through
reversible phosphorylation of its threonine residues. Molecular
oxygen is released as a by-product of the energy conversion process,
and this could be used as a precursor for ROS production [38].

PRA2, PR2 and PR9 belong to Profile 5 (Fig. 2; Supp. Fig. 1).
PRA2, PR2 and PR9 transcript levels peaked at 6 hai, at which time
sub-stomatal vesicles are generally visible in Toropi. The expres-
sion profiles of these genes were similar (Table 3), suggesting a
complementary role in the Toropi-P. triticina interaction. Peroxi-
dases (PRA2 and PR9) are a broad group of enzymes that catalyze
the reduction of peroxides, being divided into three classes based
on sequence comparisons. Class I peroxidases are intracellular
enzymes. Class II and III contain the secretory fungal and plant
peroxidases, respectively. Plant peroxidases are involved in many
physiological and developmental processes, from germination to
senescence, having roles in plant cell wall formation and lignifi-
cation, and the production of ROS [39]. NCBI defines PRA2 (gene
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accession number: AY506496) as a T. aestivum class III root
peroxidase (http://www.ncbi.nlm.gov; [40]), but in this study was
found to be expressed in wheat leaves. PR2 is an b-1,3-glucanase, a
group of enzymes known to play a major role in plant defense and
general stress responses through the regulation of callose depo-
sition [18]. However, glucan is also found in fungal cell walls and
plant b-1,3-glucanases are able to hydrolyze fungal glucans. In-
duction of PRA2, PR2 and PR9 transcription 6 hai with P. triticina
may therefore be part of a ROS signaling defence pathway, and/or
required for cell wall modifications, such as callose deposition
[41], to restrict pathogen invasion before the formation of
haustoria.

PR1 and PR4 had similar expression profiles, Profile 6 (Fig. 2;
Supp. Fig. 1). PR1 being a b-1,3-glucanase and PR-4 an endochiti-
nase [42]. These proteins are involved in the degradation of fungal
cell walls, being required for the hydrolysis of glucan and chitin,
respectively. PR1 and PR4 transcripts peaked at 72 hai in Toropi,
well after the appearance of haustoria, and presumably are tar-
geting secondary hyphal growth. However, PR2, also a b-1,3-
glucanase belonged to Profile 5, with the highest transcript levels
being seen at 6 hai, followed by 72 hai. This would suggest that
expression of PR genes, with potentially similar functions is trig-
gered by different stages of P. triticina development.
Conclusions

The pre-haustorial resistance seen in Toropi towards the leaf
rust pathogen P. triticina and the early levels of expression of LTP,
WCAB, AQP1, PRA2, PR2, PR9, before visible haustoria formation at
24 hai indicates a possible PAMP-Triggered-Immunity (PTI) resis-
tance response. While the subsequent expression of genes involved
in lignin formation (COMT1) at 24 hai, PR1 and PR4 at 72 hai, would
suggest an Effector-Triggered-Immunity (ETI) resistance response,
leading to the hypersensitive cell death seen in 37% of P. triticina-
Toropi infection sites at 120 hai [9]. The pre-haustorial leaf rust
resistance in adult plants of Toropi is unusual, and phenotypically
resembles non-host resistance in Arabidopsis to barley powdery
mildew [43,44] and in barley to non-adapted rust species [45],
where infection is suppressed early by pre-haustorial mechanisms
without cell necrosis, with the few haustoria that may establish
eliciting a post-haustorial hypersensitive response. Consequently,
leaf rust APR in Toropi is an interesting and valuable source of
resistance for Brazilian wheat breeding programs.
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