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The ergots are a structurally diverse group of alkaloids derived from tryptophan 7 and dimethylallyl

pyrophosphate (DMAPP) 8. The potent bioactivity of ergot alkaloids have resulted in their use in many

applications throughout human history. In this highlight, we recap some of the history of the ergot

alkaloids, along with a brief description of the classifications of the different ergot structures and

producing organisms. Finally we describe what the advancements that have been made in understanding

the biosynthetic pathways, both at the genomic and the biochemical levels. We note that several

excellent review on the ergot alkaloids, including one by Wallwey and Li in Nat. Prod. Rep., have been

published recently. We provide a brief overview of the ergot alkaloids, and highlight the advances in

biosynthetic pathway elucidation that have been made since 2011 in Section 4.
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1. History of ergot alkaloids

Ergot alkaloids1–3 were rst identied in dark dense sclerotia
produced upon the infection of grass and grains by parasitic
fungi of the genus Claviceps. However, ergot alkaloids are also
produced in a variety of other lamentous fungi, including
species in the genus Aspergillus, Neotyphodium, Arthroderma,
Penicillium, Epichloe, Balansia and the recently described Peri-
glandula.4,5 Ergot alkaloids have long been a part of human
history. Ergot grain disease and the bioactive properties of
the ergots have been noted in parts of Egyptian, Assyrian,
Chinese and Greek history.6 Ergot alkaloids impacted society
during the Middle Ages in Central Europe, as these alkaloids
caused mass poisonings in both humans and animals that
gical Chemistry, Norwich NR4 7UH, UK.

Chemistry 2014
fed on grains contaminated by ergot producing fungi.7 Mass
outbreaks of gangrene, convulsions, and hallucinations as a
result of ergot poisoning were collectively named “St.
Anthony's Fire” otherwise now known as “ergotism”. Ergot
alkaloids were also associated with historical events of mass
hysteria during the Great Fear of French Revolution and were
believed to play a role in the Salem Witch Trials.6,8 Ergotism
was nally correlated to the consumption of infected rye
during the latter part of the 17th century, enabling steps to be
taken to reduce the horric poisonings caused by these
compounds.

The notorious history and abuse of ergot compounds have
oen overshadowed the benecial medicinal properties of
these molecules. Clinical use of ergot compounds as medicine
for postpartum hemorrhage began to emerge in the early 19th

century. Further research and screening of ergot derivatives
for oxytocic activity in 1938 resulted in the synthesis of
lysergic acid diethylamide (LSD) 3 hallucinogen that has
become infamous for its use as an illicit recreational drug.6

Currently, ergot alkaloids are the inspiration behind
numerous semi-synthetic derivatives that have been applied
for a wide range of medicinal purposes including the treat-
ment of migraines, parkinsonism, and tumor growth. The
diverse bioactivity exhibited by ergot alkaloids is related to its
ability to act as an agonist or antagonist toward neuro-
receptors for dopamine, serotonin, and adrenaline.9,10 In
2010, the total production of these alkaloids was approxi-
mately 20 000 kg, of which eld cultivation contributed about
50%.11 Semi-synthetic derivatives of ergot alkaloids aim to
tailor their activity toward specic receptors while reducing
their adverse side effects (Fig. 1).
Nat. Prod. Rep.

http://crossmark.crossref.org/dialog/?doi=10.1039/c4np00062e&domain=pdf&date_stamp=2014-08-27
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2. Ergot alkaloid classes
All ergot alkaloid structures contain the tetracyclic ergoline ring
(Fig. 2A). Ergot alkaloids can be divided into classes based on
the substituents attached on the ergoline scaffold; the major
classes include the clavines, simple lysergic acid derivatives and
ergopeptides. The clavines include such structures as agro-
clavine 1 or festuclavine 2 (Fig. 2B). Simple lysergic acid deriv-
atives consist of the basic D-lysergic acid structure with
attachment of an amide in the form of an alkyl amide (Fig. 2C).
Ergopeptides consists of a D-lysergic acid and a cyclic tripeptide
moiety (Fig. 2D).

3. Ergot alkaloid producers

Ergot alkaloid producing fungi occupy distinct ecological niches.
Clavicipitaceous species such as Claviceps purpurea and Neo-
typhodium lolii from the order Eurotiales are plant parasites and
biotrophic symbionts, while Aspergillus fumigatus from the order
Eurotiales is an opportunistic pathogen of mammals.8,12–14 These
distantly related fungi lineages, not surprisingly, produce unique
ergot alkaloid proles. Ergot alkaloids that are derivatives of
lysergic acid and ergopeptides (Fig. 2C and D) are associated with
Clavicipitaceous fungi Claviceps purpurea and Neotyphodium lolii,
and are believed to aid in protecting the fungi from predation by
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mammals and insects. In contrast, clavine type ergot alkaloids
(Fig. 2B) are only produced by A. fumigatus during conidiation but
its biological role to aid in survival of conidia during invasive
aspergillosis is not completely understood.15 Recently, fungi of the
family Arthrodermataceae have been studied for ergot produc-
tion.16 Arthroderma benhamiae has been demonstrated to be a
producer of chanoclavine-I aldehyde 14.16 Notably, isolation of the
ergot alkaloid peptide, ergosinine, from the sea slug Pleuro-
branchus forskalii has been reported, indicating that ergots may
also be produced in aquatic organisms.17

Ergot alkaloids were also found in plant taxa Convolvulaceae
(Solanales), which are associated with Clavicipitaceous fungi.18,19,20

It has been shown that the morning glory family (Convolvulaceae)
are colonized by an ergot alkaloid-producing Clavicipitaceous
fungus and are seed-transmitted.18,21 Treatment of the colonized
host leaves with fungicides led to elimination of leaf-associated
fungus and simultaneous loss of alkaloids from the plant.22 These
endophytic fungi form mutualistic symbiosis with plants and
cause no symptoms of infection. The defensive mutualism
consists of production of bioactive ergot alkaloids by fungi to
protect the host plant from herbivores, while the fungi benet
from protected niche and nutrition from the plant. This indicates
that the ecological role of ergot alkaloids supports environmental
tolerance of plants, their tness, resistance from drought and
feeding deterrence from mammals and insects.20,23–30 The fungal
symbionts are vertically transmitted through seed of the host
plant,31 though the mechanism of how the fungi spread in the
respective host plant remains unclear. There are no signs of
penetration of the plant epidermis by an epibiotic fungus.
Hypothetically, fungal hyphae, which are in close contact with the
oil secretory glands of the plant cuticle, may play a major role in
the metabolic interaction fungus–host plants.32
4. Ergot alkaloid biosynthesis
4.1 Proposed ergot alkaloid biosynthetic pathway

Biosynthesis of ergot alkaloids was initially investigated
through extensive feeding studies of isotopically labelled
substrates to cultures of C. purpurea.20 These studies led to a
Sarah O'Connor received her BS
in chemistry from the University
of Chicago, and performed the
work leading to her PhD in
organic chemistry at Caltech
and MIT under the direction of
Barbara Imperiali and did post-
doctoral work at Harvard
Medical School with Christo-
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ested in alkaloid natural products.

This journal is © The Royal Society of Chemistry 2014
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Fig. 1 Natural and semi-synthetic ergot alkaloids displaying diverse bioactivity by interactions with vary neurotransmitter receptors.
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proposed biosynthetic pathway for ergot compounds (Fig. 3).
The rst committed step of ergot alkaloid biosynthesis is the
prenylation of L-tryptophan 7 by dimethylallyl pyrophosphate
(DMAPP) 8, to yield 4-(g,g-dimethylallyl)tryptophan (DMAT)
10.33,34 The next step involves the N-methylation of DMAT to
yield 4-dimethyl-L-abrine (N-Me-DMAT) 11.35 Subsequently, a
proposed series of successive oxidation steps catalyze the
intramolecular cyclization of the prenyl and indole moieties to
form ring C in tricyclic chanoclavine-I 13.36–39 Chanoclavine-I 13
in turn is oxidized to form chanoclavine-I-aldehyde 14, which is
the last common precursor of all classes of ergot alkaloid. At
this rst branch point, chanoclavine-I-aldehyde 14 can undergo
intramolecular cyclization to form either ring D of tetracyclic
agroclavine 1 (C. purpurea, N. lolii) or festuclavine 2 (A. fumiga-
tus). Subsequent branch points derivatize agroclavine 1 and
festuclavine 2 into lysergic acid amides/peptides and fumiga-
clavines, respectively, as described in Section 4.4 (Fig. 3).
4.2 Ergot alkaloid biosynthetic gene clusters

Fungal genes that code for the biosynthesis of secondary
metabolites typically cluster on a single genetic locus, in
This journal is © The Royal Society of Chemistry 2014
contrast with genes for primary metabolism, which are not
localized in clusters.12 For fungi the clustering of genes for
secondary metabolite production is believed to give a selective
advantage due to improved efficiency of gene regulation. Other
hypotheses propose that this clustering may be a remnant from
horizontal gene transfer from prokaryotes or mechanism to
facilitate horizontal gene transfer.12,40,41 Ergot alkaloid biosyn-
thetic genes have been shown to be clustered in A. fumigatus14

(Fig. 4A) and Clavicipitaceous fungi C. purpurea42,43 (Fig. 4B),
C. fusiformis44 (Fig. 4C), N. lolii45 (Fig. 4D) and Arthroderma
benhamiae16 (Fig. 4E). Homologues common among these
species are believed to participate in early steps of ergot
biosynthesis, while species-unique genes are most likely
responsible for further downstream modications to give the
specic ergot alkaloid classes distinct to each species, as dis-
cussed further in Section 4.4 (Fig. 4). Given the similarities of
the early biosynthetic genes, the distantly related A. fumigatus
and Clavicipitaceous fungi likely share a common origin for
their ability to produce ergot alkaloids (Fig. 4).46

Using a reverse genetics approach, Tsai et al. successfully
identied and cloned the gene coding for L-tryptophan
Nat. Prod. Rep.

http://dx.doi.org/10.1039/c4np00062e


Fig. 2 (A) 6,8-Dimethylergoline tetracyclic ring structure with conventional numbering and lettering. (B) Examples of clavines. (C) Simple lysergic
acid derivatives. (D) Ergopeptides consists of D-lysergic acid with a cyclic tripeptide moiety.
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dimethylallyl prenyl transferase (DmaW) from C. purpurea.47

This initial discovery allowed the identication of the ergota-
mine biosynthesis cluster (68.5 kb) from C. purpurea – the rst
ergot gene cluster – via chromosome walking (Fig. 4B).42 Gene
open reading frames were assigned putative functions based on
sequence similarity to previously characterized enzymes.42

Importantly, this gene cluster included open reading frames
encoding non-ribosomal peptide synthetase (NRPS) modules
(Lps1 and Lps2) that would be expected to be involved with the
later biosynthetic pathway formation of ergopeptides.48–50

Additionally it was also observed that comparison of cluster
sequences within C. purpurea strain P1 (ergotamine producer)
with strain C. purpurea ECC93 (ergocristine producer) displayed
conservation of most genes associated with the early pathway
formation of the ergoline ring, yet displayed high variation in
genes associated with the NRPS production of the peptide ergot
moiety. An excellent study by Schardl et al. compares ergot
alkaloid proles, their gene contents and arrangements of those
genes among 15 Clavicipitaceae.2,5 The dramatic differences in
ergot alkaloid proles are now believed to be caused by specic
mid-pathway or late-pathway genes and differences in substrate
or product specicity due to gene sequence variations. Notably,
there seems to be a strong tendency for alkaloid loci to have
conserved cores that specify the skeleton structure, whereas the
peripheral genes determine the chemical derivatizations of
these core skeletons that impact the biological specicity of
Nat. Prod. Rep.
these molecules. For example, the authors have correlated
chemotypes of Claviceps species with presence or absence of the
genes LpsA, LpsB, LpsC, EasH, EasO and EasP and with the
position of these genes in the clusters. In general, location at
the periphery of the cluster means that the gene is near trans-
poson-derived, AT-rich repeat blocks, which facilitates gene
losses, duplications, and neofunctionalizations. The organiza-
tion of the ergot biosynthetic genes strongly suggest that these
fungi are under selection for alkaloid diversication, which is
likely related to the variable life cycles and environments of
these fungi.

Clustered genes for ergot biosynthesis were subsequently
found in Neotyphodium sp. Lp1 (a natural hybrid Neotyphodium
lolii � Epichloe typhina), initially studied by Panaccione et al.,51

where disruption of the NRPS Lps1 homologue (LpsA) involved
in ergopeptide biosynthesis resulted in the loss of downstream
alkaloid ergovaline 6. Wang et al. further demonstrated that
disruption of a DmaW homologue led to loss of ergot alkaloid
production for 6 in this species.52 Complementation of the gene
with the DmaW homologue from C. fusiformis restored ergot
alkaloid production.52,53 Later, Fleetwood et al. identied part of
the ergot alkaloid cluster for ergovaline biosynthesis (�19 kb) in
N. lolli using both chromosome walking and southern blot
(Fig. 4D).45 Notably, it was demonstrated that the LpsB gene in
N. lolli, a homologue of the C. purpurea Lps2, was associated
with ergovaline 6 production.45
This journal is © The Royal Society of Chemistry 2014

http://dx.doi.org/10.1039/c4np00062e


Fig. 3 Early and late biosynthetic pathways of ergot alkaloids. Clavicipitaceous fungi C. purpurea and N. lolii are associated with production of
ergot alkaloids with an unsaturated ergoline D ring whereas A. fumigatus is associated with production of saturated D ring. Ergotamine 5 derives
from agroclavine 1 and fumigaclavine C 22 derives from festuclavine 2.

This journal is © The Royal Society of Chemistry 2014 Nat. Prod. Rep.
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Fig. 4 Representative ergot alkaloid gene clusters. (A) A. fumigatus. (B) C. purpurea. (C) C. fusiformis. (D) N. lolli. (E) A. benhamiae.
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The A. fumigatus ergot biosynthetic gene cluster (22 kb), the
discovery of which was facilitated by the published genome
sequence of A. fumigatus, is associated to the production of
fumigaclavines A, B, C, (21, 20, 22 respectively) and festuclavine
2.14 The gene cluster that is responsible for the production of
these ergot alkaloids had been previously identied via gene
disruption of DmaW in A. fumigatus and heterologous expres-
sion and characterization of the of the dimethylallyltryptophan
synthase DmaW gene (annotated as fgaPT2) in Saccharomyces
cerevisiae.14,54 Further analysis of gene function in this cluster
led to the characterization of EasF and EasD gene products that
are attributed to the early step ergot pathway.55,56 Notably, no
homologues for the later pathway lysergyl peptide synthase
genes were observed,42,45 which correlates with the lack of
lysergic acid 18 derived ergopeptides in A. fumigatus. A recent
survey of various isolates of the A. fumigatus family were shown
to have variable production of ergot alkaloids, which could be
linked to changes in the ergot gene cluster.57

Genome sequence analysis of fungi of the family Arthro-
dermataceae revealed the presence of a gene cluster consisting
of ve genes in several species with high sequence similarity to
those involved in the early common steps of ergot alkaloid
biosynthesis in Aspergillus fumigatus and Claviceps purpurea.16
4.3 Biochemical characterization of early ergot alkaloid
biosynthetic enzymes

A number of genes in the ergot alkaloid biosynthetic clusters
have been biochemically characterized. The rst step into the
ergot biosynthetic pathway is catalyzed by the dimethylallyl
prenyltransferase (DmaW) enzyme58 puried to homogeneity
from cultures of ergot alkaloid producing C. fusiformis.33,34
Nat. Prod. Rep.
DmaW prenylates L-tryptophan via an electrophilic aromatic
substitution reaction.34,59 Recent work suggests that the mech-
anism may entail a Cope rearrangement (Fig. 3),60 and two
lysine amino acids have been implicated in the mechanism.61

DmaW homologues from A. fumigatus and other Clavicipita-
ceous fungi such as C. purpurea and N. lolli have also been
characterized.47,52,54 The structure of this enzyme has been
solved recently, which will has improved our understanding of
this enzyme's specicity for the substrate and regioselectivity.62

Recent work has indicated that alternate substrates, 4-methyl-
tryptophan, 4-methoxytryptophan and 4-aminotryptophan, can
be prenylated by DmaW.63 Intriguingly, several tryptophan
prenyl transferases have also been shown to display amino-
peptidase activity.64

The next early pathway enzyme EasF is responsible for the
N-methylation of DMAT 10 and was rst puried by Otsuka et al.
from cell free cultures of C. purpurea.35 EasF methylates the
amine nitrogen of dimethylallyl tryptophan using the S-adeno-
syl methionine (SAM) co-factor. Later, aer the identication of
the ergot biosynthetic gene cluster in A. fumigatus, the EasF gene
was successfully cloned and heterologously expressed and also
methylated DMAT to yield N-Me-DMAT 11 (dimethylallyl L-
abrine).55 Following the N-methyltransferase EasF, two succes-
sive oxidations are proposed to transform N-Me-DMAT 11 to
chanoclavine-I 13, thus forming ergoline ring C. These two
oxidation steps of the pathway are predicted based on feeding
studies conducted by Kozikowski et al.38 Two notable observa-
tions from these studies were1 observation that a proposed
diene intermediate 12 was incorporated into downstream ergot
alkaloids of C. purpurea38 and2 molecular oxygen was incorpo-
rated into chanoclavine-I 13.37 Enzyme candidates of the ergot
clusters that were capable of carrying out oxidation reactions
This journal is © The Royal Society of Chemistry 2014
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were proposed to be EasC and EasE, which display protein
sequence similarity to catalases and FAD oxygenases, respec-
tively. The involvement of the EasE and EasC gene products in
the oxidations of N-Me-DMAT 11 to chanoclavine-I 13 in C.
purpurea has also been demonstrated by gene disruption
experiments.65 The disruption of EasE and EasC genes in A.
fumigatus and the subsequent interpretation of the resulting
ergot alkaloid proles indicate that EasC and EasE are both
required for ring C formation.66 Heterologous expression of
EasC yielded a protein with catalase activity.66

EasD, is an NAD+ binding oxidase capable of oxidizing the
hydroxyl of chanoclavine-I 13 to yield chanoclavine-I-aldehyde
14. EasD was successfully cloned and characterized from A.
fumigatus by Wallwey et al.67 A homologous gene in the cluster
from Arthroderma benhamiae was heterologously expressed and
also shown to oxidize chanoclavine-I 13 in the presence of NAD+

to form chanoclavine-I aldehyde 14.16 The next enzymes of the
pathway, EasA and EasG, are required in the cyclization of
chanoclavine-I-aldehyde 14 to form ergoline ring D, represent-
ing the branching point of ergot alkaloid biosynthesis into
either festuclavine 2 (A. fumigatus) or agroclavine 1 derived
alkaloids (C. purpurea/N. lolii). Homologues of EasA in the ergot
cluster show protein sequence similarity to enzymes of the Old
Yellow Enzyme (OYE) family. OYE enzymes display activity
toward the reduction of alpha beta unsaturated ketones and
aldehydes,68 making this a likely candidate capable of reducing
the alpha beta unsaturated carbonyl of chanoclavine-I-aldehyde
14 to give the cyclized iminium intermediates 15, 19 in ring D
formation (Fig. 3).56,69,70 A notable difference between the ergot
alkaloid classes is the fully saturated D ring of (Fig. 2A) the
clavine type alkaloids compared to the unsaturated ergoline D
ring of the ergotamine type alkaloids.71 An EasA homolog from
N. lolli and its role in the cyclization of ring D to produce
agroclavine 1 as opposed to the EasA homolog from A. fumigatus
which forms festuclavine 2 has been documented.72 In addition,
mutational analysis suggests the mechanistic rationale behind
this critical branch point in ergot alkaloid biosynthesis and
created an EasA homolog capable of producing both festucla-
vine 2 and agroclavine 1 products.72 The EasG protein encoded
by the cluster displays similarity to Rossman fold NADPH
reductases and its function is to reduce the proposed cyclized
iminium products 15, 19 of EasA to form festuclavine 2
(A. fumigatus) or agroclavine 1 (C. purpurea/N. lolii).72–74
4.4 Biochemical characterization of late ergot alkaloid
biosynthetic enzymes

Early pathway steps dene ergoline ring biosynthesis up to
either festuclavine 2 or agroclavine 1 intermediates. The
enzymes involved with the transformations in later step ergot
alkaloid pathway biosynthesis are attributed to the pathway
divergence of ergot alkaloid proles among different fungi
species.

The Clavicipitaceous fungi C. purpurea and N. lolli carry late
step pathway genes encoding non-ribosomal peptide synthases
(NRPS) domains for the conversion of agroclavine 1 into ergo-
peptides. Several of these genes have been studied by gene
This journal is © The Royal Society of Chemistry 2014
disruption or in vitro characterization (Fig. 3). These studies
have shown evidence that ergopeptide formation occurs via an
enzyme complex composed of NRPS subunits D-lysergyl peptidyl
synthetase (Lps2) that activates lysergic acid and (Lps1) which
forms the tripeptide moiety.48–51,53,75–78 The enzyme CloA was
also demonstrated to be critical for the oxidation of elymocla-
vine 16 to yield paspalic acid 17, which either spontaneously or
via an isomerase enzyme rearranges to form lysergic acid 18
(Fig. 3).79 Recently, Havemann et al. have expressed EasH
(C. purpurea) annotated as nonheme-iron dioxygenase, which
cyclizes dihydrolysergyl-ala-phe-pro-lactams to dihydroergota-
mine by catalyzing a hydroxylation and subsequent lactol
formation.80

In contrast, the A. fumigatus fumigaclavine C 22 biosynthetic
gene cluster carries late ergot pathway genes that have been
demonstrated to show acetylation and reverse prenyl trans-
ferase activities for the conversion of festuclavine 2 into later
pathway fumigaclavines A 21, B 20, and C 22.81,82 A. fumigatus
does not appear to carry any genes that encode for NRPS
domains that are observed in ergot biosynthetic clusters of
N. lolii and C. purpurea (Fig. 3). Recently however, the non-
ribosomal peptide synthetases PesL and Pes1, previously
thought to be involved in biosynthesis of fungal quinazoline
containing natural products, have been shown to be essential
for fumigaclavine C 22 biosynthesis in A. fumigatus by gene
deletion experiments.83 Notably, these synthetases are not
found in the core ergot cluster. A. fumigatus also produces
Fumitremorgin B, which requires an N-prenylation step, the
enzyme for which has also been identied.84

5. Production of ergot alkaloids

Production of ergot alkaloids in A. fumigatus is restricted to
conidiating cultures.85 Cultures typically accumulate several
pathway intermediates at once, with most of the alkaloid
content associated with the fungal colonies rather than being
exported to the media. A two-stage culture process that
combines shake culture with static culture was shown to
enhance the production of fumigaclavine C 22 to 60 mg L�1.86,87

A recent review highlights the challenges and progress associ-
ated with the use of Claviceps as a source for biotechnological
production of ergot alkaloids.11 Very recently, heterologous
reconstitution of these pathways presents another option for
expression of the ergot alkaloids. The early steps of this pathway
– DmaW, EasF, EasE, EasC – have been reconstituted in Asper-
gillus nidulans (a non-producer of ergots)88 and Saccharomyces
cerevisiae (in press). Finally, a recent review highlighting the
methods required for isolation of ergot alkaloids has been
recently published.89

6. Conclusions

The ergot alkaloids are a group of structurally diverse and bio-
logically active natural products. As additional genomes of
fungal species are reported, undoubtedly more gene clusters,
biosynthetic enzymes and subsequently new compounds and
their biosynthetical mechanisms will be discovered. Many of
Nat. Prod. Rep.
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these fungi, particularly those that are plant associated, are
difficult to culture. Therefore production of these ergot alka-
loids by heterologous expression of the genes clusters (a
synthetic biology approach) is a powerful tool to access new
ergot alkaloids from species that are hard to culture. Moreover,
biotrophic relations of fungi and plants from diverse caldes,
organization of ecological communities, evolution and diversi-
cation of mutualisms will continue to provide new insights
into the biological activity and evolution of the ergot alkaloids.
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